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A NOTE ON LAMBERT'S THEOREM 

This note combines all the various cases of Lambert's Theorem into a 
single form which is particularly comenient for numerical work. This is made 
possible by appropriate choice of parameter and independent variable. 

Suppose a particle in a gravitational central force field has distances r I  
and r ,  at times t and t, from the center of attraction. Let c be the distance 
and 8 the central angle between the positions of the particle at the two times. 
Define 

- 
s - (rl + r, + c ) / 2  

K = 1 - c / s  

q = + K H  

The sign of q is taken care of by the angle 8 if we make use of 

c2 = r: + r: - 2r1r2 cos e 

to derive 

We further define 

G = universal gravitational constant 

M = mass of attracting body 

p = GM 

a = semimajor axis of transfer orbit 

E = -s/2a for elliptic transfer 

= s/2a for hyperbolic transfer 

T = (8p/S)"  ( t ,  - tl)/s 
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m = number of complete circuits during transfer time. 

Note that - 1 5 q 5 1, 0 < E < for  hyperbolic transfer, -1 5 E 0 f ,I' 
elliptic transfer, and E = 0 for parabolic transfer. Also 0 5 H 5 71 if 0 5 q 1. 1 
and 71 < 0 5 2 n i f  -1 f q < 0. 

Lambert's Theorem' for elliptic transfer gives 

For hyperbolic transfer, 

T = - [y - 6 - ( s i n h  y - sinh 6 1 1  

E = s i n h 2  (y/2)  

If E is chosen2 as the independent variable, a is ambiguous. We avoid any 
ambiguity by choosing a s  the independent variable 

x = cos ( a / 2 ) ,  - l ( x <  1, 

- 
- cosh ( y / 2 ) ,  x 1. 

For both elliptic and hyperbolic transfer 

E x 2  - 1. 
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For the elliptic case let 

y = sin ((2/2) = (-E)' 

z = COS (pi21 = (1 .+ KE)% 

f = sin (%) ( a - P )  = y(z - qx) 

g = cos (%) (a - ,D l  = xz - qE 

O l a - P z 2 7 ~  since O c f z 1  

h = ('A) (sin a - sin p )  = y ( X  - 92) 

A = arctan ( f / g ) ,  0 5 A 5 

It then follows for the elliptic case that 

T = 2(m77 + A - h)/y3 

For the hyperbolic case let 

y = sinh ( y / 2 )  = EH 

z = cosh (6 /2 )  = (1 + KE)% 

f = sinh ('A) ( y  - 6 )  = y ( z  - qx) 

g = cosh (34) ( y  - 6 )  = x z  - qE 

h = ('A) (sinh y - sinh 6 )  = y(x - qz) 
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Thus for the hyperbolic case 

T = 2 [h - l n ( f  + g) l /y3  (4) .. 
When m 0 ,  equations (l), (2), (3) and (4) break down for x = 1 and suffer 

$ ,  from a critical loss of significant digits in the neighborhood of x 
remedy th is  (1) is written 

1. To 

Replacing arcsin U" and ( 1  - u)"  by ser ies3,  

@ ( u )  4/3 + C a n u n ,  lul < 1 ,  
m 

n =  1 

a n  1 (2n - 5 ... 

A similar procedure produces the same series for  the hyperbolic case. In 
fact (5) holds for the elliptic (rn = 0 )  , parabolic, and hyperbolic cases provided 
o < x < 2 .  

It is now apparent that, given q and x , the following steps produce T for 
all cases: 

1 .  K q2 

2 .  E = x 2 - 1  

4. If p is near 0 , compute T from (5). 

7 .  f = y ( z  - q x )  
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- 9. I f  E < 0, A = arctan ( f /g) ,  d - m n  i- A, 0 5 A 7-r 

I f  E >  0, d = l n ( f  + g) 

The following formula for the derivative holds for all cases except for 
x = Owith K = 1 andfor x = 1. 

dT/dx = (4  - 4qKx/z - 3xT)/E 

If x is near 1, the series representation should be differentiated. If q = 1 
we have a left-hand derivative of -8 and a right-hand derivative of 0 at x = 0 .  
If q = -1 we have a left-hand derivative of 0 and a right-hand derivative of -8 
at  x = 0. (See Figure 1.) 

In the derivation of Lambert's Theorem for the elliptic case a and P are 
defined in such a way that 

( 5) 
- E, - E, - a - ,8 i- 2m77 

where E , and E , are the values of the eccentric anomaly at times t ~ and t . 
Thus from equation (1) 

E, - E, 
= ( -EI3l2T i- s i n  a - s i n  p 

= y3T i- 2 y ( x  - q z ) .  

We now obtain a formula for the scalar product 

- - S, - r ,  - v ,  - r l v l  sin $J1 

\ 

of the position and velocity vectors at time t , , v , and $J1 being the speed and 
flight path angle. 
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Kepler's equation can be written4 

( p / a 3 ) "  ( t 2  - t l )  = E, - E, -I- S ,  [l - cos(E2 - E,) l / (pa)"  

-(1 .- r l / a )  s i n ( E 2  - E l ) .  

Substituting a = - s/2E, t - t = s3'2 T/(8p)"  , and making use of (5) and 
(6) we have, after some algebra, 

A similar procedure produces the same formula for S, in the hyperbolic 
case. It also holds for the parabolic case. 

Figures 1 and 2 show T as a function of x for elliptic and hyperbolic 
transfer, the parabolic case occurring for x 
pare these curves with those in Reference 2 showing T as a double-valued 
function of E with infinite slope at E = -1. 

1. We suggest the reader com- 

No solutions of Lambert's equation exist in the shaded regions of figures 1 
T -, 0 as x -, a. and 2. x = 1 ( m  > 0)  and x = -1 are vertical asymptotes. 
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Figure 1-E vs. T for elliptic case 
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